An extended Kalman filter for quaternion-based orientation estimation using MARG sensors

نویسندگان

  • Joao Luis Marins
  • Xiaoping Yun
  • Eric R. Bachmann
  • Robert B. McGhee
  • Michael Zyda
چکیده

This paper presents an extended Kalman filter for real-time estimation of rigid body orientation using the newly developed MARG (Magnetic, Angular Rate, and Gravity) sensors. Each MARG sensor contains a three-axis magnetometer, a three-axis angular rate sensor, and a three-axis accelerometer. The filter represents rotations using quaternions rather than Euler angles, which eliminates the long-standing problem of singularities associated with attitude estimation. A process model for rigid body angular motions and angular rate measurements is defined. The process model converts angular rates into quaternion rates, which are integrated to obtain quaternions. The Gauss-Newton iteration algorithm is utilized to find the best quaternion that relates the measured accelerations and earth magnetic field in the body coordinate frame to calculated values in the earth coordinate frame. The best quaternion is used as part of the measurements for the Kalman filter. As a result of this approach, the measurement equations of the Kalman filter become linear, and the computational requirements are significantly reduced, making it possible to estimate orientation in real time. Extensive testing of the filter with synthetic data and actual sensor data proved it to be satisfactory. Test cases included the presence of large initial errors as well as high noise levels. In all cases the filter was able to converge and accurately track rotational motions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attitude Estimation of Nano-satellite according to Navigation Sensors using of Combination Method (TECHNICAL NOTE)

The purpose of this paper is to attitude estimation of Nano-satellite which requires navigation sensors data to less cost function and effection movement of Nano-satellite focus of the research is to using data of navigation sensors and methods to achieve the requirement of the attitude estimation. in this paper the following attitude estimation of the according to direction of sun of the Nano-...

متن کامل

Pedestrian dead reckoning for MARG navigation using a smartphone

The demand for navigating pedestrian by using a hand-held mobile device increased remarkably over the past few years, especially in GPS-denied scenario. We propose a new pedestrian dead reckoning (PDR)-based navigation algorithm by using magnetic, angular rate, and gravity (MARG) sensors which are equipped in existing commercial smartphone. Our proposed navigation algorithm consists of step det...

متن کامل

Orientation Power - LowOn the Accuracy Improvement of 1 IMU and MARG Sensor Arrays Usings Filter

The orientation estimation filter proposed by Madgwick [1] for inertial and inertial/magnetic sensors have been successfully used as a core solution in a variety of commercial low-power motion tracking devices. The approach offers a high accuracy and reduces the computational cost compared to the state-of-the-art Kalman-based methods [10]. In this paper, we propose a modification to the Gradien...

متن کامل

Mobile Robot Navigation Error Handling Using an Extended Kalman Filter

Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...

متن کامل

Mobile Robot Navigation Error Handling Using an Extended Kalman Filter

Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001